
7 AD-A093 262 VIRIA POLYTECHNIC
INST AND STA -TE UNIVDEWASHITN

TC F/ 9/2

LI BS IM. AN EXTENSION OF THE SIMULA: TRADEMRK LIBRARY U)
AUG GO R J ORGASS AFOSR-79-0021

UNCLASSIFIED VPI/SU-TM-GO N AFOSR-TR-G0-129 L

AFOSR.TR. 80 -12 9 0l

.4 VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY

DEPARTMENT OF COMPUTER SCIENCE P.. Box 17186
GRADUATE PROGRAM IN NORTHERN VIRGINIA Wahmugtow D. C 20041

(703) 471-4600

LEVEL
LIBSIM: AN EXTENSION OF THE SIMULA* LIBRARYt

Richard J. Orgass

Technical Memorandum No. 80-4

August 28, 1980 DEC "|3

DC 1980)

ABSTRACT

The DEC-10 SIMULA library contains a number of procedures
that are not available in the IBM SIMULA library. A subset of
these procedures as well as approximations to procedures in
class SAFEIO (distributed with DEC-10 SIMULA) have been imple-
mented for use with IBM SIMULA and collected in a TXTLIB. This
report describes these procedures and gives directions for ac-
cessing and using the procedures.

* SIMULA is a registered trademark of the Norwegian Computing
Center.

H t Research sponsored by the Air Force Office of Scientific
Research, Air Force Systems Command, under Grant No.
AFOSR-79-0021. The United States Government is authorized

CL. to reproduce and distribute reprints for governmental pur-
poses notwithstanding any copyright notation hereon.

LA.
. Approved for publie rlea$*

LA. _distribution unlimited.

Located at Dulles International Airport-400 West Service Road

Copyright, 1980

by

Richard J. Orgass

General permission to republish, but not for profit, all or part
of this report is granted, provided that the copyright notice is
given and that reference is made to the publication (Technical
Memorandum No. 80-4, Department of Computer Science, Graduate
Program in Northern Virginia, Virginia Polytechnic Institute and
State University), to its date of issue and to the fact that re-
printing privileges were granted by the author.

Vr%

V i~

SECURITY CL ASSIFICATION OF THIS P

lei READ INSTRUCTIONSREPORT DOCUMENTATION PAGE FJFFORE COMPLETING FORM
2. GOVT ACCESSION No. 3. RECIPIENT'S CATALOG NUMBENk

4. EIL OadSjhil)F REPORT .6 PERIOD COVERED

LBI:AN EXTENSION OF THE SIMULA ' IBAR. I i I- -'/ /
6. PCRFORMING 01G. REPORT NUMBER

7. AUTHOR(.) S. CONTRACT OR GRANT NUMBER(a)

-9 PERFORMING ORGANIZATION NAME AND ADDRESS 10 PROGRAM ELEMENT. PROJECT. TASK
AREA II WORAI.4JNIT NUMBERS

Dept . of Commiter Science
Virginia Polyt. Ins t. and 61102f i'/T3yA5
State University

11. CONTROLLING OFFICE NAME AND ADDRESS I-r~ QAT OATE

Air Force Office of Scientific Researrh/NM // 28 -Augwls..98 O

Po]lling, AFB, Washingfon, D.C. 2033? Ii. -NUMBER OF PAGES 4J ,~

IA MONIT(IRIN) AGF.4GV +#A"L & DR&~ 4en*A ~lO lun Itice IS SECURITY CLASS, 1.1 thl. .,,r

tINCLASS IF IED
IS* DECLASSIFICATION DOWNGRADING

SCHEDULE.

16. DISTRIBUTION STATEMENT (olf lId, R~r'r)

Appi-od for plub[c 'ld , di ;trihlltion i]illi teId.

17 DIST INUTION STATEMENT r t fhe hv-1, 111e~liI,1.k 20. 0-tteeo 'n RepoI) [.3 GR.'.&I

10 SUPPLEMENTARY NOTES

Distributicfl/

Availability Codes
Avail and/or

19 KEY WORDS (Co,,ilno f-"-rs side I -co-es A ...i mi ldenli I, hblck n,,rb-nD stIl

20 ARSTRAC T (Cisnlnn on reierso s~ii it neroxsry and IderfiII, hi' blockr ruimbe"j

ailable in the IBM SIM11LA library. A subset. of therco procedures as welas~
aproimations 0~ tIL procedures'i conais aFT (lldi' f rhCtedI~ w th t arc1 otMU

hav ben ipleentd fr (o wth BMSTMULA and collected in a TXTI.IB. This

DD 1413 EDITION OF I NOV1 11 IS OBSOLETE 1 N CL ASS J FIE D
SECIIRITY CLASSIFICATION OF THIS PAGE (%Mii'not P el. d

LIBSIM: AN EXTENSION OF THE SIMULA LIBRARY

1. Introduction

In the course of bringing a number of DEC-10 SIMULA interac-
tive programs into satisfactory operation in the VM/CMS environ-
ment, a collection of generally useful SIMULA procedures has been
developed and placed in a CMS TXTLIB for general use. This
report provides documentation for the procedures in this library.

A set of three procedures that considerably simplify the crea-
tion of terminal dialogs is described in Section 2.

When doing any amount of text processing in SIMULA it is very
convenient to have a number of procedures that are not in the
standard IBM SIMULA library available. Most of the text process-
ing procedures described in Section 3 are CMS implementations of
procedures that are part of the DEC-10 SIMULA library.

Sorting procedures for one dimensional arrays of types
integer, real and character are described in Section 4. These
sort procedures are a structured implementation of Floyd's tree-
sort_3.

A variety of utility procedures that serve a specific function
are described in Section 5. They include a means for entering
CMS subset, a reasonable procedure to terminate execution without
a GO TO directed to the end of the program and dummy procedures
to retain calls to the DEC-10 SIMULA procedures freeze and enter-
debug.

The character set conversion procedures described in Section 6
provide the resources to support input from both bit-paired and
key-paired ASCII/APL terminals and to provide translations
between the ASCII and EBCDIC character sets.

There are other procedures in LIBSIM which support the proce-
dures described here. Since these procedures are not intended
for general use, these procedures are not mentioned in this
report. The source files for these procedures contain the docu-
mentation needed for maintenance.

In the body of this report, procedures are described after
exhibiting the heading of the procedure declaration. This decla-
ration should not be used in a running program. The procedures
should simply Be-declared as external procedures. For example,
in Section 3 there is a description of a procedure conc2 and the
heading:

i i

, -- ll a I I I I-1 -

TEXT PROCEDURE conc2(tl, t2);
VALUE tl, t2; TEXT tl, t2;

is exhibited. In a program that uses this procedure, it should
be declared as:

EXTERNAL TEXT PROCEDURE conc2;

Unless there is some statement in the body of this report to the
contrary, all procedures described here should be declared in
this way.

[In this report, procedure names are given as an identifier
that is long enough to be a meaningful name for the procedure.
The SIMULA compiler automatically truncates all external proce-
dure identifiers to the first seven characters. Therefore,
entries in LIBSIM TXTLIB are truncated to the first seven charac-
ters. Users are encouraged to use the full procedure name in
their programs because the txtlib will be modified if the SIMULA
compiler no longer truncates external procedure identifiers.]

The txtlib LIBSIM is on the 191 disk of userid CSDULLES. If
you are planning to use these procedures in your programs, you
must link to this disk (read password all) as a read only exten-
sion of your A disk. In addition, your global statement should
be:

global txtlib libsim mvslib

or

global txtlib libsim simlib

This global must be executed after you link to the 191 disk of
CSDULLES.

The source files for all of the procedures in libsim are in
the genlib LIBSIM on the 192 disk of CSDULLES (read password
all).

It has been determined that there are some differences between
the SIMULA run time library for MVS SIMULA and for CMS SIMULA.
The system default simlib is the CMS SIMULA library. There are
some programs that will execute correctly in CMS only if they use
the MVS SIMULA run time library. The MVS SIMULA library is on
the 191 disk of CSDULLES as file MVSLIB TXTLIB.

A reasonable set of commands to execute before compiling and
executing programs that use the procedures described here is:

cp link csdulles 191 330 rr all
% access 330 b/a

global txtlib libsim mvslib

,1 -2-

or:

cp link csdulles 191 330 rr all
access 330 b/a
global txtlib libsim simlib

2. Terminal Dialog Procedures

The three procedures described in this section have the fol-
lowing properties. When the procedure is called the parameters
include the question to be asked, a default answer, and a proce-
dure to print a further explanation of the question on the ter-
minal. The return value of the procedure is the user's response.
If the user responds with a carriage return, the return value is
the default value and if the user responds with a question mark
(?) the procedure to explain the question is invoked and then the
question is asked again.

For example, suppose a program wishes to read an input file
name from the terminal into a text variable file spec. This can
be accomplished by executing the following statement:

file_spec :- textrequest("Input file: ", NOTEXT, TRUE);

The first parameter is the question that is to be printed on the
terminal. The second parameter is the default answer and since
this parameter is NOTEXT, there is no default answer. The third
parameter is the constant TRUE to indicate that no help is avail-
able. When the statement is executed, the terminal transcript
will look like this:

Input file: ?
No help available.
Input file:
Default value may not be selected. Please try again.
Input file: letter simula

After this, the return value of textrequest is the text "letter
simula". In the first response, the user asked for an explana-
tion of the query by responding with a "?". Since the call to
textrequest did not include a help procedure, the appropriate
message was printed. Next, the second response was an empty line
indicating that the default value was desired. Since no default
value was specified in the procedure call, a corrective response
was printed and then the question was asked again. Finally, the
third response was a character string and this string became the
return value of the procedure.

As a second example, suppose that the statment:

f :- textrequest("Output file: ",

"letter data",
TRUE);

-3-

is executed. In this case the terminal transcript would look
like this:

Output file: /letter data/: ?
No help available.
Output file: /letter data/:

Since the second response was simply a carriage return, the
return value of textrequest is the string "letter data". On the
other hand, if the response were some other character string,
then this string would be the return value.

Suppose it is desirable to provide a help message in response
to the input "?". This might be accomplished by writing the fol-
lowing procedure:

BOOLEAN PROCEDURE help;
BEGIN

Outimage;
Outtext("This file will contain ");
Outtext("a list of addresses");
Outimage;
Outtext("after the program is executed.");
Outimage

END of help;

Executing the statement

f :- textrequest("Output file: ",
"letter data",
help);

might generate the following transcript:

Output file: /letter data/: ?
This file will contain a list of addresses
after the program is executed.
Output file: /letter data/: mylib address

After this transcript, the statement concludes by assigning the
text object "mylib address" to f.

The heading of the declaration of textrequest is:

I,

S r

-4

TEXT PROCEDURE textrequest(prompt, default, nohelp);
NAME prompt, default, nohelp;
VALUE default;
TEXT prompt, default;
BOOLEAN nohelp;

The formal parameter prompt is the question to be printed on the
terminal and the formal parameter default is the value to be
returned if the user's response is a carriage return. The param-
eter no help is to be TRUE if there is no help available for this
query. If there is help available for this query, it is printed
by a boolean procedure that returns the value FALSE.

The procedure booleanrequest is used to ask yes or no ques-
tions in very much the same way. The heading of the declaration
of this procedure is:

BOOLEAN PROCEDURE booleanrequest(prompt,
default,
nohelp);

NAME prompt, no
help;

VALUE default;
TEXT prompt;
BOOLEAN default, nohelp;

The formal parameter prompt is the question that is to be printed
on the terminal and the parameter default (which must be a boo-
lean variable or constant) is the return value if the user
responds by entering a carriage return. If the user responds
with a "?" and if no help is TRUE then the message "No help
available." is printed-on the terminal. On the other hand, if
nohelp is a boolean procedure that returns FALSE and prints an
explanation, this text is printed instead of "No help available."

For example, if the procedure help6 is declared as:

BOOLEAN PROCEDURE help6;
BEGIN

Outtext("If tabs may be used at indentation ");
Outtext("answer ""y"",");
Outimage;
Outtext("otherwise answer ""n"".");
Outimage

END of help6;

Then the execution of the statement:

tabs := booleanrequest("Tabs in indentation: "

FALSE,
V help6);

initiates the following transcript:
r-5-

Tabs in indentation: /n/: ?
If tabs may be used at indentation answer "y",
otherwise answer "n".
Tabs in indentation: /n/: why
Please answer y or n.
Tabs in indentation: /n/: y

After this transcript, the return value of booleanrequest is
TRUE. If the last response had been an empty line or "n", then
the return value would have been FALSE.

Note that the response must be one of the letters "y" or "n"
either in upper or lower case.

The procedure integerrequest is used to prompt for an integer.
response and to check if the response is an integer within an
acceptable range. The heading of this procedure is:

INTEGER PROCEDURE integerrequest(prompt,
default,
min,
max,
no_help) ;

NAME prompt,
no help;

VALUE default, mn, max;
TEXT prompt;
INTEGER default, max, min;
BOOLEAN nohelp;

The formal parameter prompt is the question to be printed on the
terminal and the formal parameter default is the value that is
returned if the user responds by entering carriage return. After
a response is read from the terminal, it is checked to confirm
that it is an integer between min and max (inclusive). If the
response fails this test, a corrective message is printed and the
user is asked for a correct response. [The default value is also
checked against the range if the user responds with a carriage
return.] The formal parameter no help is used to deal with the
user response " as described above.

If any integer is an acceptable response, the SIMULA defined
constant Maxint may be used in a call. For example, if the
default answer to the prompt "Enter any integer: " is 0, one
might declare

EXTERNAL ASSEMBLY PROCEDURE Maxint;

and then execute the statement

result :f integerrequest("Enter any integer: ",
% 0,

-Maxint,
Maxint,
TRUE);

-6-

As a more detailed example, consider the execution of the
statement:

result := integerrequest("reserved words: "

1,
0,3,
TRUE);

The terminal transcript might look like this:

Reserved words: /0/: ?
No help available.
Reserved words: /0/: bye
The input was not an integer. Please try again.
Reserved words: /0/: 12
The input integer was out of the acceptable range (0,3].
Please try again.
Reserved words: /0/: 2

After this sequence of events, the return value of integerrequest
is 2.

These three procedures provide most of the terminal prompting
activities that are needed in many interactive programs. While
it might be desirable to have a procedure to prompt for floating
point numbers, the authors have not felt this need and, there-
fore, did not include it in the library.

Finally, a reminder: In Section 1 it was pointed out that all
procedures described in this report are available as external
procedures and are to be so declared. In the above discussion,
the headings were exhibited to convey information about the
procedures. In a program that uses these procedures, they should
be declared as follows:

EXTERNAL TEXT PROCEDURE textrequest;

EXTERNAL BOOLEAN PROCEDURE booleanrequest;
EXTERNAL INTEGER PROCEDURE integerrequest;

A similar statement applies to all the procedures described in
this report.

The procedures described in this section are adaptations of
procedures in class SAFEIO as distributed with DEC-10 SIMULA.

3. Text Processing Procedures

A variety of procedures that substantially simplify writing
elementary text processing procedures in SIMULA are described in
this section. Most of the procedures share the property that

rj they accept one or more text objects as parameters and that they

-7-

t -- .

return a new text object which is different from all of the
parameters. As in Section 2, the headings of the procedure dec-
larations precede the description of the procedure. All of the
procedures described here except for conc are to be declared as
external text procedures.

TEXT PROCEDURE conc2(tl,t2);
VALUE tl, t2;
TEXT tl, t2;

The return value of this procedure is a new text object that is
the concatenation of the text objects tl and t2. The length of
the return value is tl.length + t2.length. The attribute Pos of
the return value is 1.

TEXT PROCEDURE exptabs(t);
VALUE t; TEXT t;

This procedure returns a text object which is the untabluated
version of its text parameter. That is, tab characters (HT) are
replaced with spaces under the assumption that tabs are set every
eight spaces as per the ISO standard. The return value of this
procedure will print on a terminal without hardware tabs in the
same way that its parameter will print on a terminal with hard-
ware tabs.

TEXT PROCEDURE frontstrip(t); TEXT t;

The return value of this procedure is a copy of the parameter
except that leading blanks have been removed. For example,
frontstrip(Image.Strip) is Image with both leading and trailing
blanks removed. The procedure is a SIMULA coded version of a
procedure with the same name in the DEC-10 SIMULA library.

INTEGER PROCEDURE hash(t,n);
VALUE t;
TEXT t;
INTEGER n;

This procedure returns an integer in the range tO,n-l] which
is a reasonable hash code for the text object that is the first
parameter. The hash coding has been found to be reasonably
effective in a variety of applications. Readers who are inter-
ested in studying the algorithm in detail are referred to the
source listing in LIBSIM GENLIB on the 192 disk of CSDXLJLES.

BOOLEAN PROCEDURE isinteger(t);
NAME t; TEXT t;

This procedure returns TRUE if its text parameter contains
"% exactly one integer and FALSE otherwise.

r TEXT PROCEDURE rest(t); TEXT t;

4i -8-

I.

This procedure returns the portion of the text t that begins
at t.Pos and ends at t.Length. That is, rest(x) is best viewed
as an abbreviation for:

x.Sub(x.Pos,x.Length-x.Pos+l)

The procedure is taken from the DEC-10 SIMULA manual and is
available in the library of DEC-10 SIMULA.

TEXT PROCEDURE upcase(t);
VALUE t; TEXT t;

The return value of this procedure is a new text object that is
the same as the actual parameter except that lower case letters
have been mapped into upper case letters. It is quite useful
when reading input from the terminal in mixed case. The user
response can be converted to upper case before further processing
and this simplifies programs.

4. Sorting Procedures

R. W. Floyd described a sorting algorithm called Treesort 3 in
Volume 7 (1964) of the Communications of the ACM (page 701).
This O(n log n) sorting algorithm has been the subject of inten-
sive study and variations of the algorithm have been verified
both informally and formally.

The three sorting procedures described in this section are all
trivial modifications of an exceptionally clear version of
Floyd's algorithm. The only difference between the procedures is
the type of the first parameter.

PROCEDURE csort(x, n);
NAME x; VALUE n;
CHARACTER ARRAY x;
INTEGER n;

This procedure sorts the array x from x[l] to x[n] into ascending
order in place. The first parameter is modified to reflect the
result of the sort.

9

~-9-

PROCEDURE isort(x, n);
NAME x; VALUE n;
INTEGER ARRAY x;
INTEGER n;

This procedure has the same properties as csort except that an
integer array is sorted.

PROCEDURE rsort(x, n);
NAME x; VALUE n;
REAL ARRAY x;
INTEGER n;

This procedure has the same properties as csort except that a
real array is sorted.

5. Utility Procedures

The procedures described in this section provide communication
with the operating system and have been found useful in a number
of applications.

PROCEDURE abort(message);
VALUE message; TEXT message;

This procedure prints the actual parameter on the terminal and
then terminates execution. However, just before execution is
terminated, the user is given the option of printing a symbolic
dump on the terminal. Unlike the IBM SIMULA system procedure
Error, there is no limit on the length of the formal parameter
and the symbolic dump is optional. The procedure is an exact
replacement for the DEC-10 SIMULA library procedure abort in IBM
SIMULA.

PROCEDURE cmssubset;

When this procedure is called, the message "[Entering CMS sub-
set.]" is printed on the terminal and the character sharp (#) is
used to prompt for input lines. Each input line is interpreted
as a CMS command and the system response is printed on the ter-
minal. The set of commands that can be executed in this mode is
the same as the set of commands that can be executed in the CMS
system editor in CMS mode. Control is returned to the calling

!V program when the terminal input line is the text "return" in any
mixture of upper and lower case letters.

PROCEDURE enterdebug(maycontinue);

BOOLEAN maycontinue;

This procedure is designed as a dummy for the DEC-10 SIMULA
library procedure with the same name. In the DEC-10 environment,
this procedure invokes SIMDDT which is not currently available in

-10-

IBM SIMULA. In the IBM SIMULA environment of SIMULA Version
7.00, the user is given the option of printing a symbolic dump on
the terminal as a substitute for SIMDDT.

If the actual parameter of this procedure is TRUE, then execu-
tion of the program continues after the call to enterdebug. On
the other hand, if the actual parameter is false, then execution
is terminated in enterdebug (by means of a call on abort). Pro-
grams that use this procedure should print some sort of explana-
tory message on the terminal before calling enterdebug.

PROCEDURE freeze(returncode);
NAME returncode; INTEGER returncode;

This procedure is designed as a dummy for the DEC-10 SIMULA
library procedure freeze in IBM SIMULA. The present version sim-
ply prints a message to the effect that freeze is not available
and continues execution. Future versions of libsim may include a
working version of the procedure.

A working version of this procedure would have the following
properties: A module file is written to the first accessible
disk in the user's search list. This module has the property
that execution begins at the statement following the call to
freeze. When execution continues, the value of the actual param-
eter indicates if the module is suitable for further execution.
If the return code is 0, execution may continue. Other non-zero
return codes will signal errors.

In DEC-10 SIMULA, the library procedure with this name per-
forms the function described above.

6. Character Set Conversions

The procedures described in this section are primarily of
interest to readers who are writing programs that are designed to
support ASCII/APL terminals. However, the procedures ascii and
ebcdic provide character set translation between ASCII and EBCDIC
and may be useful in a variety of other applications.

EXTERNAL FORTRAN INTEGER PROCEDURE ascii;

The actual parameter of this procedure is an integer in the
range (0,2551 and the return value is an integer in the range
[0,127]. The actual parameter is interpreted as an EBCDIC char-
acter code and the return value is the ASCII code for the same
character subject to the assumptions described below.

It is assumed that the only characters of interest are the 128
characters that can be entered on an ASCII terminal and the
EBCDIC characters that do not corresnond to one of these charac-
ters are treated as nulls (ASCII 0, EBCDIC 0).

-11

This procedure uses the ASCII-EBCDIC translation table that is
used with the Memorex 1380 in the Virginia Tech VM system.

The multiple EBCDIC codes for certain characters, e.g., ,
{, }, are acknowledged and all versions are mapped into the cor-
responding ASCII character.

EXTERNAL FORTRAN PROCEDURE bpair;

This procedure has four parameters ichar, il, i2, i3. The
first parameter is a value parameter and the remaining parameters
are name parameters.

This procedure is designed to be used when writing EBCDIC text
to a bit-paired ASCII/APL terminal when the terminal is in the
APL character set. In this mode, the terminal has upper case
letters and lacks some of the graphics in the ASCII character
set. In order to preserve, as best possible, the appearance of
text written in the ASCII subset of EBCDIC, character translation
is desirable. In particular, the following translation is per-
formed:

(1) Lower case letters are translated into upper
case (APL) letters.

(2) Upper case letters are translated into under-
lined upper case letters.

(3) ASCII graphics are mapped into the corres-
ponding graphic in the APL character set.
The exceptions are as follows: The sharp (#)
is mapped into the right tack. The percent
(%) is mapped into diamond. The ampersand
(&) is mapped into the APL and sign. The at
sign (@) is mapped into the APL character
alpha. The "hat" (^) is mapped into the APL
high minus.

When the procedure is called, the first parameter should be
the EBCDIC code for the character that is to be printed on the
terminal. Upon procedure return, the values of il, i2 and i3 can
be used to print the corresponding APL character as follows:

Outchar(Char(il));
IF i2 NE 0

THEN BEGIN
Outchar (Char (i2))
Outchar (Char (i3))

END;

In this code fragment, it is assumed that the terminal is already
in the APL character set.

-12-

t -

TEXT PROCEDURE convtoapl(t,ttype);
VALUE t, t type;
TEXT t;
INTEGER ttype;

In accord with the value of the variable t type, an EBCDIC
text object is translated into a text object that will print in
approximately the same form on an ASCII, key-paired APL or bit-
paired APL terminal.

The translation that is performed is specified by the value of
the parameter ttype as follows:

(1) If t type = 0, the actual parameter is
returned as the value of the procedure.

(2) If t type = 1, then the actual parameter is
modifled so that it will print on a key-
paired ASCII/APL terminal. The character
translation that is peformed is decribed with
the procedure kpair above.

(3) If t type = 2, then the actual parameter is
modiried so that it will print on a bit-
paired ASCII/APL terminal. The character
translation that is performed is described
with the procedure kpair above.

EXTERNAL FORTRAN INTEGER PROCEDURE ebcdic;

The single parameter of this procedure is a value integer.
This integer, which must be in the range (0,127] , is interpreted
as an ASCII character code and the return value of this procedure
is the EBCDIC code of the same character and is in the range
[0,255].

Character translation is performed using the translate table

used with the Memorex 1380 in the Virginia Tech VM system.

EXTERNAL FORTRAN PROCEDURE kpair;

This procedure has the same specifications as the procedure
bpair described above with one minor modification: The transla-
tion is performed for key-paired ASCII/APL terminals.

CHARACTER PROCEDURE kpchar (n); REAL n;

The range of the parameter n of this procedure is the reals
that are equal to the integers in [0,127]. Such a real is inter-
preted as the ASCII code of an APL character on a key-paired APL
terminal. The return value of this procedure is the EBCDIC char-
acter that is to be sent to the terminal to print the character
that corresponds to the parameter under this mapping. This
procedure is the inverse of kpcode described below.

-13-

REAL PROCEDURE kpcode (c); CHARACTER c;

The range of this procedure is the ASCII subset of EBCDIC.
The parameter is interpreted as an APL character typed on a key-
paired ASCII/APL terminal and the return value is the real that
is equal to the ASCII code for this APL character. This proce-
dure is the inverse of kpchar described above.

7. Maintenance Information

The source files for the procedures in LIBSIM are contained in
file LIBSIM GENLIB on the 192 disk of userid CSDULLES (read pass-
word ALL). A listing of the directory of the GENLIB follows.

ABORT SIMULA Al 80 F 2 21 03/08/80 12:37:30
BOOLEAN SIMULA Al 80 F 24 114 03/08/80 12:37:34
CMSSUBS SIMULA Al 80 F 139 63 03/08/80 12:37:37
CONC2 SIMULA Al 80 F 203 9 03/08/80 12:37:41
CONVTOA SIMULA Al 80 F 213 114 03/08/80 12:37:44
CSORT SIMULA Al 80 F 328 79 03/08/80 12:37:47

* ENTERDE SIMULA Al 80 F 408 42 03/08/80 12:37:52
EXPTABS SIMULA Al 80 F 451 42 03/08/80 12:37:56
FDHELP SIMULA Al 80 F 494 47 03/08/80 12:38:02
FILEDEF SIMULA Al 80 F 542 70 03/08/80 12:38:04
FREEZE SIMULA Al 80 F 613 9 03/08/80 12:38:07
FRONTST SIMULA Al 80 F 623 19 03/08/80 12:38:10
GETDDIN SIMULA Al 80 F 643 220 03/08/80 12:38:13
GETDDOU SIMULA Al 80 F 864 139 03/08/80 12:38:18
HASH SIMULA Al 80 F 1004 31 03/08/80 12:38:27
INITIAL SIMULA Al 80 F 1036 15 03/08/80 12:38:32
INTEGER SIMULA Al 80 F 1052 161 03/08/80 12:38:38
ISINTEG SIMULA Al 80 F 1214 39 03/08/80 12:38:47
ISORT SIMULA Al 80 F 1254 79 03/08/80 12:38:52
KPCHAR SIMULA Al 80 F 1334 26 03/08/80 12:38:59
KPCODE SIMULA Al 80 F 1361 26 03/08/80 12:39:05
PART SIMULA Al 80 F 1388 72 03/08/80 12:39:10
REST SIMULA Al 80 F 1461 8 03/08/80 12:39:15
RESTORE SIMULA Al 80 F 1470 14 03/08/80 12:39:22
RSORT SIMULA Al 80 F 1485 79 03/08/80 12:39:26
SIMXXX SIMULA Al 80 F 1565 17 03/08/80 12:39:31
UPCASE SIMULA Al 80 F 1583 39 03/08/80 12:39:46

b. XLATE SIMULA Al 80 F 1623 16 03/08/80 12:39:55
DDCNT FORTRAN Al 80 F 1640 6 03/08/80 12:40:03
ASCII RATFOR Al 80 F 1647 148 03/08/80 12:40:15
BPAIR RATFOR Al 80 F 1796 271 03/08/80 12:40:29
EBCDIC RATFOR Al 80 F 2068 74 03/08/80 12:40:40
KPAIR RATFOR Al 80 F 2143 271 03/08/80 12:40:53
TABEXP ASSEMBLE Al 80 F 2415 251 03/08/80 12:41:06
VPIABORT ASSEMBLE Al 80 F 2667 33 03/08/80 12:41:21
VPISAVE ASSEMBLE Al 80 F 2701 167 03/08/80 12:42:35
VPIREST ASSEMBLE Al 80 F 2869 169 03/24/80 16:28:55
VPIINI ASSEMBLE Al 80 F 3039 305 03/25/80 12:21:21

-14-

VPIMOI ASSEMBLE Al 80 F 3345 229 04/16/80 14:04:25
TEXTREQ SIMULA Al 80 F 3575 116 04/22/80 12:57:38

